
Rapid increases and extreme months in projections
of United States high-tide flooding
Philip R. Thompson1,2,*, Matthew J. Widlansky2, Benjamin D. Hamlington3, Mark A.
Merrifield4, John J. Marra5, Gary T. Mitchum6, and William Sweet7

1Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i
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ABSTRACT

Coastal locations around the United States (US), particularly along the Atlantic coast, are experiencing recurrent flooding
at high tide. Continued sea-level rise (SLR) will exacerbate the issue where present, and many more locations will begin
to experience recurrent high-tide flooding (HTF) in coming decades. Here we use established SLR scenarios and flooding
thresholds to demonstrate how the combined effects of SLR and nodal cycle modulations of tidal amplitude lead to acute
inflections in projections of future HTF. The mid-2030s, in particular, may see the onset of rapid increases in the frequency of
HTF in multiple US coastal regions. We also show how annual cycles and sea-level anomalies lead to extreme seasons or
months during which many days of HTF cluster together. Clustering can lead to critical frequencies of HTF occurring during
monthly or seasonal periods 1–2 decades prior to being expected on an annual basis.

The impact of HTF accumulates over numerous seemingly minor occurrences, which can exceed the impact of rare extremes1

over time1–3. These impacts are subtle—e.g., loss of revenue due to recurrent road and business closures4—compared to the2

physical damage of property and infrastructure associated with extreme storm-driven events. As SLR increases the frequency3

of HTF in the US5–11, coastal communities will need to adapt. However, developing adaptation pathways for recurrent coastal4

flooding is challenging and requires knowledge of environmental and social tipping points for which current actions and policies5

become ineffective12–14.6

Here we characterize projected increases in US HTF—including the impact of the 18.6-year nodal cycle in tidal ampli-7

tude15–17—in a way that can be used to establish planning horizons and develop adaptation pathways. First, we focus on the8

rate of flooding-frequency increase, which is not well understood despite being critical to establishing SLR impact timelines18.9

More specifically, we examine acute inflections, or tipping points, in the rate of increase that mark transitions from periods of10

gradual (and potentially imperceptible) change to rapid increase in HTF frequency. Second, we focus on the tendency for HTF11

episodes to cluster in time19. Scientists, engineers, and decision-makers are accustomed to the statistics and impacts of isolated12

extreme events20–23, but given the cumulative nature of HTF impacts1–3, we describe extreme months or seasons during which13

the number of flooding episodes, rather than the magnitude, is exceptional.14

Projections of high-tide flooding frequency15

Ensemble projections of twenty-first century HTF frequency (Methods) are generated for 89 tide-gauge locations across the16

contiguous United States (US) and US-affiliated Pacific and Caribbean islands (Supplementary Data). HTF frequencies are17

represented as counts of days in monthly and annual windows for which at least one hourly sea-level value exceeds the flooding18

threshold of interest. NOAA SLR Scenarios24 and derived HTF thresholds10, which are ubiquitous in US coastal planning, are19

used to produce the projections. NOAA minor and moderate flooding thresholds correspond to levels 50–60 cm and 80–90 cm,20

respectively, above the local mean higher high water (MHHW) tidal datum10 (Supplementary Data). NOAA Intermediate Low21

and Intermediate SLR scenarios correspond to 0.5 m and 1.0 m, respectively, of global mean SLR by 2100. At present, it22

is not possible to assess which SLR scenario the observations are tracking due to decadal variability in global and local sea23

level25–27 and the lack of divergence in the scenarios (< 2 cm) during 2000–2020. However, these two scenarios bracket the24



bulk of global and local SLR possibilities during the twenty-first century, being roughly equivalent to the fourth and 83rd25

percentiles24 of probabilistic local sea-level projections28 based on IPCC AR5 Representative Concentration Pathway 8.529.26

Here we focus on results for the Intermediate scenario; see Supplementary Data and Extended Data Figs. 2, 4 for results based27

on the Intermediate Low scenario.28

Under the Intermediate scenario, annual projections of HTF days from different regions of the U.S. coastline show dramatic29

increases in HTF frequency over the next 30–40 years (Fig. 1). The 10-90th percentile range of each ensemble projection30

represents the degree to which the count in any given year can vary due to local sea-level variability across a variety of processes31

and time scales from high-frequency surge to decadal climate variability. Including the effect of local sea-level variability32

is essential for producing useful HTF projections, as SLR and astronomical tides alone will underestimate HTF frequency33

(Extended Data Fig. 1)10. Note that the range of projections over the ensemble at each location should not be interpreted as a34

true uncertainty, because uncertainty in anthropogenic SLR is excluded in this case by utilizing a discrete NOAA SLR scenario.35

Incorporating uncertainty in SLR—as in the probabilistic projection28 from which the NOAA scenarios are extracted24—would36

produce a much wider range of possibilities.37

Rapid transitions in the frequency of high-tide flooding38

The projections in Fig. 1 exhibit an important commonality: pronounced inflections in HTF frequency prior to mid-century.39

Such inflections, or tipping points, are essential for planning, because they represent transitions from regimes of gradual—and40

in some cases almost imperceptible—change to regimes of rapid increase in HTF frequency. These can produce acute impacts41

in unsuspecting and under-prepared communities if not identified in advance and communicated to stakeholders and decision-42

makers. The timing and severity of inflections are related to multiple factors. First, present-day HTF in most locations occurs43

during only the highest astronomical tides of the year. With SLR, increasing moderate (and more common) high tides will44

reach flood thresholds, resulting in a rapid increase in the number of HTF days. Second, high-tide amplitudes vary predictably45

in space and time due to astronomical forcing over timescales from monthly (i.e., spring-neap cycles) to decadal (i.e., the46

18.6-year nodal cycle, see below). The interplay between SLR elevating increasing numbers of high tides toward the threshold47

and modulations of the tidal amplitude by astronomical forces dictates the timing and nature of inflections in HTF frequency.48

To investigate contributions to projected rapid HTF increases, we identify a year of inflection (YOI) for each combination of49

tide-gauge location, scenario, and threshold (Methods). In practice, a continuum of YOIs exists at each location corresponding50

to the range of possibilities for threshold height and evolution of twenty-first century SLR. While the YOIs here are specific51

to the scenarios and thresholds used, they indicate the approximate timing at which rapid transitions will occur for similar52

scenarios and thresholds. For the four highlighted cases (Fig. 1), the YOI marks the end of a decade experiencing little increase53

in the expected number of HTF days per year, while decades following the YOIs experience a quadrupling or more.54

YOI timing at the four locations is linked to modulations of tidal amplitude associated with the 18.6-year nodal cycle15, 16.55

For example, in St. Petersburg, the nodal cycle range is 4.7 cm, representing the peak-to-trough difference in the height of56

the highest (annual 99th percentile) astronomical tides over a nodal cycle (Fig. 2, left). While not large compared to nodal57

cycle ranges exceeding 20 cm in other parts of the world30, the range in St. Petersburg is sufficient to impact the evolution of58

increasing HTF. During 2024–2033, the Intermediate scenario projects 8.9 cm of SLR in St. Petersburg (Fig. 2, left). The height59

of the highest tides, however, is projected to increase by just 4.3 cm due to decreasing tidal amplitude associated with the nodal60

cycle. The opposite occurs during the following decade, and the increase in height of the highest tides (14.1 cm) is enhanced61

relative to SLR (9.4 cm). Importantly, the decadal difference in high-tide height increase in St. Petersburg (14.1−4.3 = 9.8 cm)62

is larger than a decade of projected SLR (≈9 cm per decade for the Intermediate scenario).63

In St. Petersburg, the ratio of the nodal cycle range to a decade of projected SLR is roughly 0.5. Calculating this ratio across64

the US highlights locations and regions where the nodal cycle is of sufficient magnitude to contribute to rapid inflections in65

HTF frequency (Fig. 2, right). Ratios in many locations, including 73% along Pacific and Gulf of Mexico coastlines, exceed66

0.4. In the near term, such locations are most susceptible to rapid inflections in HTF frequency due to the confluence of SLR67

and nodal-cycle modulations of tidal amplitude.68

The projection algorithm employed here (Methods) explicitly incorporates twenty-first century predictions of astronomical69

tides and captures the effects of long-period tidal modulation on HTF frequency. The nonlinear relationship between the height70

of the highest tides and HTF frequency (Methods) further amplifies the inflection in the HTF projection, which manifests in a71

rapid increase from 13 to 80 HTF days per year on average in St. Petersburg over the decade following the YOI in 2033 (Fig. 1,72

lower right). Not coincidentally, the YOI for St. Petersburg also corresponds to the nodal cycle minimum in tidal amplitude,73

marking the transition between suppression and enhancement of increasing high-tide height by the nodal cycle.74

YOI timing around the US tends to be similar—though not uniform—within regions (Fig. 3 and Supplementary Data).75

Timing generally depends on (1) threshold height, (2) local rates of relative SLR, and (3) the timing of nodal-cycle minima76

in tidal amplitude. Higher rates of relative SLR and/or lower thresholds lead to earlier YOIs. Glacial isostatic adjustment31
77

can offset absolute SLR, leading to YOIs later in the century (e.g., Oregon and Washington). The relative importance of the78
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nodal cycle varies with the ratios in Fig. 2. For locations and regions where the nodal-cycle is a leading order contribution79

to changes in HTF, YOIs tend to occur near minima in tidal amplitude. We note, however, that the timing of minima in tidal80

amplitude varies regionally depending on the tidal constituent for which nodal cycle modulations are most prominent. For81

Hawai‘i, the Pacific Coast, and the Gulf of Mexico, the nodal cycle is most prominent in modulations of the lunar diurnal (K1)82

tidal constituent, which has amplitude minima in the mid-2030s, mid-2050s, and early 2070s. For northern portions of the83

Atlantic coast, the nodal cycle is most prominent in modulations of the lunar semidiurnal (M2) tidal constituent, which has84

amplitude minima in the mid-2020s, mid-2040s, and early 2060s. Hence, the YOI for Boston in Fig. 1 occurs in the mid 2040s,85

while YOIs for the other three cases occur in the mid 2030s.86

The purpose of the YOI calculation is to provide a marker for the potential onset of rapid HTF increases. The severity of the87

increase following YOIs is indicated in two ways in Fig. 3. Values along the vertical axis correspond to absolute increases88

in the expected number of HTF days per year during the decade following each YOI. The sizes of the markers correspond to89

relative increases (i.e., 10-year multipliers) in HTF days per year over the decade following the YOI. The most acute inflections90

occur where the 10-year period following the YOI experiences both large absolute (i.e., upper portion of vertical-axis domain)91

and large relative (i.e., large marker) changes.92

Under the Intermediate scenario, many Atlantic locations will experience modest inflections in the frequency of minor93

HTF in the mid-2020s (Fig. 3, top), which in some cases correspond to minima in nodal-cycle modulations of the M2 tidal94

constituent. The relative 10-year increases for Atlantic locations are generally modest compared to other regions, because the95

minor threshold is already routinely exceeded for many of these sites11. Around the mid-2030s, locations along the Pacific and96

Gulf of Mexico coastlines will experience rapid increases in HTF frequency (Fig. 3, top). The timing and severity of inflections97

in these regions are influenced by nodal-cycle modulations of the K1 tidal constituent and are generally associated with large98

10-year multipliers indicating transitions from few to many HTF days per year. Under the Intermediate SLR scenario, 71% of99

Pacific Island, California, and Gulf of Mexico locations will experience at least a tripling, and 59% at least a quadrupling, of100

minor HTF days per year over a 10-year period beginning in the 2030s.101

NOAA moderate flooding thresholds are rarely exceeded at present11. For the Intermediate SLR scenario, rapid transitions102

in moderate HTF tend to begin in the mid-2040s along the Atlantic coast and during the 2050s for the Pacific and Gulf coasts103

(Fig. 3, bottom). Exceptions include Gulf of Mexico locations (e.g., Grand Isle, Louisiana and Galveston, Texas), where104

YOIs occur during the mid-2030s due to high subsidence rates and substantially larger relative SLR. In general, YOIs for105

moderate thresholds occur later in the century compared to minor thresholds. Since the projected rate of SLR accelerates106

during the twenty-first century, YOIs for moderate thresholds tend to occur during periods when SLR rates are higher. As a107

result, the 10-year multipliers for decades following YOIs are larger for the moderate flooding thresholds compared to the108

minor thresholds. For the Intermediate SLR scenario, 79% of locations would experience at least a four-fold increase in the109

HTF frequency above the moderate threshold during a single decade (compared to 39% for the minor threshold). 35% would110

experience a six-fold increase during a single decade (compared to 20% for the minor threshold).111

Clustering of HTF days112

The 90th percentile of the ensemble spread for annual projections (Fig. 1) is expected to be exceeded about once per decade on113

average. Thus, year-to-year sea-level variability unrelated to secular SLR will lead to occasional but inevitable extreme years114

when many HTF days cluster together19. The 4.4-year modulation of tidal amplitude32 can also contribute to extreme years,115

apparent in the HTF projection for La Jolla (Fig. 1) and other locations, especially the Pacific Coast and Southeast-Atlantic116

Bight (not shown). Clustering occurs at subannual timescales as well, and there are typically one or two seasons at any location117

for which the number of HTF days increases more rapidly due to annual and semiannual cycles in mean sea level and tidal118

amplitude (Extended Data Fig. 3). In Honolulu, for example, the most likely (50th percentile) annual count of HTF days in119

2047 is 63 (Fig. 1). However, splitting the analysis into monthly counts reveals that 30 of those events are expected to occur120

over a span of three months (October–December, Extended Data Fig. 3). Thus, the expected temporal density of HTF days121

during this season (10 days per month) is approximately double that expected from considering the annual count alone (about122

5 days per month). Similar differences in seasonal density of HTF days are expected for the other three locations. Note the123

seasonal timing of peaks in semiannual modulations of tidal amplitude (and hence HTF frequency) vary year to year and are124

linked to the 4.4-year modulations mentioned above32.125

Seasonal clustering of events can be further compounded by monthly to seasonal sea-level anomalies associated with modes126

of internal climate variability (e.g., El Niño) or other atmosphere-ocean processes. If, for example, a large monthly mean127

sea-level anomaly occurs during peak HTF season, the two factors produce elevated numbers of HTF days during a brief period128

that far exceeds the expected annual density of events33. To demonstrate the impact of clustering, we calculate the average129

number of HTF days per month in five-year periods for the four locations (Fig. 4). Using the ensemble projections, we also130

estimate the counts of HTF days during the most extreme season (i.e., consecutive three-month period) and most extreme131

individual month over each five-year span (Fig. 4). For example, the 2040–2044 pentad in Honolulu is projected to experience132
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≈2.5 minor HTF days per month on average (or about 150 minor HTF days over the entire five-year span). However, projected133

counts of minor HTF days during the most extreme season and month during this five-year span are 6–14 and 10–19 HTF134

days per month, respectively. Similar clustering is expected for St. Petersburg, while the effect is smaller for Boston and La135

Jolla. In general, utilizing the expected number of HTF days per year (or pentad or decade) for decision-making will greatly136

underestimate the cumulative impact during brief periods experiencing extreme numbers of HTF days.137

Another consequence of clustering is that any given HTF frequency will occur during brief periods long before it becomes138

expected on an annual basis. For example, consider the case for which minor flooding occurs on a majority of days during a139

given period. For most locations under the Intermediate scenario, this frequency of minor HTF will not occur on an annual140

basis until the second half of the twenty-first century10. Projections of minor HTF confirm this timeline for annual periods141

(Fig. 5, top row), however, if the focus shifts to monthly periods and includes the impact of clustering, we find the timeline for142

experiencing flooding on a majority of days during a given period shifts significantly toward the present (Fig. 5, bottom three143

rows). To estimate the importance of this effect, we calculated the probability that each location will experience minor flooding144

on a majority of days during a single month at least two decades prior to the year when minor flooding becomes expected on a145

majority of days annually. The probabilities were calculated by determining the fraction of projection ensemble members for146

each location that met this criterion. For the Intermediate scenario, this probability exceeds 50% (i.e., it is more likely than147

not) at 42% of the locations analyzed. The percentage increases to 81% of stations for lead times of 15 or more years. By148

incorporating the combined effects of month-to-month variations in mean sea level and tidal amplitude, our results suggest that149

planning horizons based on the emergence time34 of a particular HTF frequency may need to be adjusted by decades toward the150

present to account for clustering of HTF days during extreme months.151

Discussion152

Multiple strategies have been developed to identify key impact thresholds either in terms of HTF frequency5 or the cumulative153

economic impact of frequent HTF events3. The YOI calculation here complements existing metrics by focusing on the pace of154

change and identifying the onset (rather than the endpoint) of rapid increases from few to many expected HTF events per year.155

Application of adaptation pathways requires updating policy and management strategies when predetermined environmental156

“triggers” or decision points occur12–14. Site-specific YOIs are candidates for such decision points, and the methodology157

underpinning the calculation provides important environmental context for stakeholders and decision-makers. In particular,158

nodal-cycle modulations of tidal amplitude will suppress SLR-induced increases in HTF during certain periods and may delay159

the onset of environmental adaptation triggers. Such delays could produce complacency and inaction through false confidence160

in benign pathways. The effect of the nodal cycle is implicit in the YOI calculation, which will allow decision-makers and161

stakeholders to communicate that periods of little perceptible change are expected in many locations—only to be followed by162

periods of exponential HTF increase.163

In general, if SLR approaches or exceeds the NOAA Intermediate scenario in coming decades, the US should expect the164

onset of a rapid increase in HTF frequency during the mid-2030s corresponding to the combined effects of ongoing SLR and165

increasing tidal amplitude associated with nodal cycle modulations. The increase would be concentrated along continental166

Pacific, Pacific Island, and Gulf of Mexico coastlines, which are more vulnerable to SLR due to relatively narrow sea-level167

distributions35, infrequent historical exposure to high storm surge14, or both. Thus, under the NOAA Intermediate SLR scenario,168

the mid-2030s marks the onset of an expected transition in HTF from a regional issue to a national issue with a majority of US169

coastlines being affected. An important caveat to this result is that the YOIs represent the most likely inflection point, and170

decadal fluctuations in local mean sea level may affect its timing.171

The cumulative nature of impacts associated with minor HTF1–3 suggests the need to account for severe seasons or months172

during which many HTF days cluster together in time. Just as engineers and coastal planners are accustomed to planning for173

rare, large-amplitude extreme events, adaptation and mitigation strategies focused on HTF should account for brief periods174

experiencing an extreme number of HTF days. The logic for basing decision-making on severe periods of HTF is the same as175

basing design decisions on long (10- or 100-year) return intervals rather than annual maxima, where the former has a planning176

horizon far in advance of the latter. Knowledge of the tendency for HTF days to cluster in time can aid interpretation of HTF177

projections with coarse (annual and longer) temporal resolution. Based on an aggregate analysis of clustering calculations178

across all US locations (not shown), we suggest the following rules of thumb for interpreting such projections. For a five-year179

period expected to experience a total of 100 HTF days, the six most severe months will experience 7–10 HTF days per180

month on average, while the remaining months will experience fewer than one HTF day per month on average. For 200 total181

HTF days over a five-year period, the six most severe months will experience 10–17 HTF days per month on average, while182

remaining months would experience fewer than 2.5 HTF days per month on average. Importantly, this tendency for HTF days183

to cluster in time underscores the need for monthly-to-seasonal forecasting of sea-level anomalies to provide advance warning184

of periods likely to experience extreme numbers of events36, 37. It is also possible that event clustering will be influenced by185

non-stationarity in the statistics of extreme non-tidal sea-level anomalies38, which have not been considered here.186
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Finally, we reiterate that our analysis focused on existing and widely used NOAA SLR scenarios and derived HTF thresholds.187

The results are therefore unique to the specific combinations of location, SLR scenario, and flooding threshold. However, as SLR188

continues and communities adapt, locally relevant flooding thresholds will evolve, and periodic reassessments will be required.189

Nevertheless, the concepts presented here are broadly applicable in identifying planning horizons and developing adaptation190

pathways for managing ongoing and future impacts of HTF. There is a need for nuanced understanding of projected increases in191

HTF frequency beyond quantifying, for example, bulk changes from one decade to the next. It is important to communicate to192

decision-makers that changes in HTF frequency will not be incremental in coming decades but will include acute inflections in193

the rate of increase punctuated by extreme months and seasons during which many events will cluster together in time. These194

results form the basis of ongoing work to communicate projected increases in HTF to US decision-makers39.195
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Figure captions299

Figure 1. Projections of annual counts of HTF days for the NOAA Intermediate SLR scenario. The NOAA minor300

flooding threshold is used for Honolulu, San Diego, and St. Petersburg. The NOAA moderate flooding threshold is used for301

Boston to highlight a threshold that is not yet routinely exceeded, which is not the case for the Boston minor threshold11. The302

50th percentile from the ensemble of projections (blue line) and 10th–90th percentile range (blue shading, 90th percentile303

highlighted in orange) show increasing numbers of HTF days per year. The year of inflection (YOI, open black circle) for304

each projection corresponds to abrupt increases in the frequency of HTF days, which are highlighted by comparing projected305

increases over two adjacent 10-year periods (dashed and solid black lines).306

Figure 2. Impact of the nodal cycle. (left) Projected height of the highest tides in St. Petersburg, FL (red) due to the307

combination of projected mean sea level rise (blue, NOAA Intermediate SLR scenario) and the 18.6-year nodal cycle expressed308

in the annual 99th percentile of astronomical tidal height (black). All time series are relative to the current mean higher high309

water (MHHW) tidal datum. (right) Ratios at each U.S. tide gauge location of nodal cycle peak-to-trough range to 10 years of310

projected sea level rise (2030s, NOAA Intermediate SLR scenario). Marker colors correspond to U.S. coastal regions.311

Figure 3. Years of inflection (YOIs) for the NOAA Intermediate SLR scenario. The upper and lower panels correspond312

to the NOAA Minor and Moderate flooding thresholds, respectively. Position along the horizontal axis corresponds to the313

timing of the YOI. The vertical axis is projected ten-year increases in annual counts of HTF days following YOIs. Marker size314

corresponds to ten-year multipliers following the YOIs. Color denotes geographic region. See Extended Data Fig. 2 for an315

analogous figure assuming the NOAA Intermediate Low SLR scenario.316

Figure 4. Extreme months and seasons. Projections of HTF days in 5-year periods for the four US stations in Fig. 1 under317

the NOAA Intermediate SLR scenario: average number of HTF days per month in each 5-year period (blue), average number318

of HTF days per month during the 5-year peak season (light orange), and number of HTF days in the 5-year peak month (dark319

orange). Circles represent the 50th percentile from the ensemble. Vertical lines show the 10th–90th percentile of the ensemble320

range.321

Figure 5. Years for which U.S. coastal locations will experience HTF on a majority of days during annual and monthly322

windows. Calculations assume the NOAA Intermediate SLR scenario. Years for which HTF is expected to occur on a majority323

days on average during annual and monthly periods (top two rows) are compared to years for which flooding will first occur on324

a majority of days during a single month (bottom two rows). Marker colors denote station region. The vertical position of each325

marker within the rows is an arbitrary vertical offset to allow visual distinction between regions and individual locations. See326

Extended Data Fig. 4 for an analogous figure assuming the NOAA Intermediate Low SLR scenario.327

Methods328

Projections of HTF days329

The projection framework is based on the idea that the number of observed hourly flooding threshold exceedances in a month—330

including the combined effect of tides, surge, and other high-frequency contributions—is statistically related to monthly mean331
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sea level and the amplitude of the highest tides during the month. For higher monthly mean sea level and/or tidal amplitude,332

there is a tendency to experience a greater number of flooding threshold exceedances, because the baseline sea level is higher.333

A higher baseline means that smaller amplitude, more common surges can raise the total water level above the threshold.334

An overview of the projection methodology is as follows:335

1. Find a statistical relationship that maps monthly mean sea level, tidal amplitude, and threshold height onto observed336

monthly counts of threshold exceedances in hourly tide gauge data. The hourly tide gauge data includes high-frequency337

surge, etc.338

2. Generate ensemble projections of monthly mean sea level and tidal amplitude for the twenty-first century.339

3. Map the ensemble projections of mean sea level and tidal amplitude from step 2 onto future counts of threshold340

exceedances using step 1. The resultant ensemble projections of threshold exceedances (i.e., HTF) represent a range of341

possibilities for the number of exceedances a tide gauge would be expected to observe during a given future month.342

The details of these steps are provided in subsequent sections.343

Relating tidal range, mean sea level, and counts of HTF days344

The methodology employed here builds on an approach previously developed for projecting the frequency of high-tide flooding
in Honolulu, Hawai‘i19. The fundamental assertion of this approach is that the probability distribution governing the number of
high-tide-flooding (HTF) days at a given location during a single month is closely related to a single parameter,

∆99 ≡ (ζ99 +η)−H, (1)

where ζ99 is the 99th percentile of predicted astronomical hourly tidal heights relative to current tidal datums, η is the monthly345

mean of the nontidal sea level variability, and H is the height of the flooding threshold of interest. Previous work focused on346

annual periods; here we calculate monthly values of ζ99 and η to produce monthly values of ∆99. The term in parentheses,347

ζ99 +η , provides a general measure of the height of high tides during a given month. The specific role of ζ99 is to capture348

variability in high-tide levels due to seasonal-to-decadal modulations of tidal range. Note that the results herein are not sensitive349

to the particular percentile used. The specific role of η is to capture variability in high-tide levels due to changes in the mean350

level about which the tides oscillate. By subtracting the threshold height, H, from this sum, we can interpret variability in ∆99351

as a measure of whether high tides are generally higher (more positive ∆99) or lower (more negative ∆99) compared to the352

threshold for a given month. The presence of stochastic, sub-monthly water level variability prevents relating ∆99 to a specific353

monthly count of threshold exceedances. Instead, we state that the ∆99 parameter is related to the probability mass distribution354

(PMD) governing the number of days during a month for which the maximum hourly water level exceeds the threshold. In355

other words, we cannot precisely predict the observed number of threshold exceedances based on monthly quantities, because356

we do not know the exact number and magnitude of high-frequency anomalies that will occur in the future. We can, however,357

predict the likelihood of any given number of threshold exceedances based on the observed historical relationships between358

mean sea level, tidal amplitude, and threshold exceedances.359

To demonstrate the relationship between ∆99 and monthly counts of high-tide flooding days, we first calculate observed360

values of ζ99 and η using hourly tide-gauge observations. We then tally the number of daily maximum water levels that exceed361

a range of thresholds in each month (i.e. monthly counts of HTF days) and record the ∆99 value corresponding to each monthly362

count. Scatter plots of January HTF day counts versus January values of ∆99 for Honolulu and Boston, respectively, give insight363

into the functional form relating the two quantities (Extended Data Fig. 5). As expected, increasing ∆99 (i.e., high tides rising364

relative to the threshold) corresponds to greater numbers of HTF days in each month. Note that the domain of ∆99 values is365

much narrower for Honolulu than for Boston, reflecting a much narrower distribution of daily maximum water levels for the366

former compared to the latter. It is also important to note the relationship between ∆99 and HTF days is nonlinear, and a unit367

change in ∆99 leads to varying increases in HTF days depending on the value of ∆99.368

To capture the probabilistic relationship between ∆99 and the monthly counts of HTF days, we model the PMD for369

monthly counts of HTF days as a beta-binomial distribution40. The beta-binomial distribution describes the probability of a370

discrete number of successes over N binary trials, where the probability that any single trial is a success is itself a continuous371

beta-distributed random variable, p ∈ [0,1]. In this case, each of the N days in a month is a “trial”, and each time the daily372

maximum water level exceeds the threshold of interest is a “success”. The beta distribution governing p can be described by373

its mean, µ , and variance, σ2. Because p is beta-distributed, the beta-binomial distribution offers a general representation of374

binomially distributed counts that can take a variety of shapes. The flexibility of the beta-binomial distribution is useful, because375

the shape of the PMD for the monthly counts changes drastically depending on the value of ∆99. For example, when ∆99 takes a376

large negative value (i.e., when the highest tides of the month are well below the threshold), we expect a highly asymmetric,377

one-sided PMD with high probability of zero exceedances and low probability of many exceedances. As ∆99 increases to378
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an expected (or mean) count of 10–20 days per month, the distribution of counts about the mean becomes approximately379

symmetric. As ∆99 increases further, the distribution becomes asymmetric and one-sided again as the counts begin to saturate at380

the maximum number of days per month.381

We use the beta-binomial distribution to formulate a hierarchical model describing the probabilistic relationships between382

the vector of observed monthly counts of HTF days (Y) and the vector of observed ∆99 values (xxx). The model is summarized,383

YYY |xxx, ΘΘΘ, ν ∼ BetaBinomial(N,µµµ,σσσ222), (2)
µµµ = S(xxx; ΘΘΘ),

σσσ
222 = νµµµ(1−µµµ),

where µµµ and σσσ222 are vectors of the parameters discussed above that determine the shape of the beta-binomial distribution at384

each value in xxx. The elements in σσσ222 are related to the elements in µµµ by a scalar parameter ν ∈ (0,1) and the third relation in385

(2), which can be derived from the analytical function describing the distribution. This leaves only µ to be defined explicitly as386

a function of x (i.e., ∆99), which is represented by a function S requiring parameters ΘΘΘ.387

Since µ describes the expectation value of the probability, p, that a single day experiences a maximum hourly water level388

above the threshold, and since daily maximum water levels at any given station tend to be approximately normally distributed,389

we base the function S on the normal cumulative distribution function (CDF),390

Φ(x) =
1
2

[
1+ erf

(
x−ξ

ω
√

2

)]
, (3)

where erf(·) is the Gauss error function, and ξ and ω are parameters representing the location and scale of the function,391

respectively. In practice we found that using this function alone as in prior work19, i.e., S(x) = Φ(x), did not perform optimally392

in many cases due to minor deviations from a purely normal distribution—namely slight asymmetries in the distribution of393

daily maximum water levels. We improved the ability of the model to describe the observed counts by defining S as the sum of394

two normal CDFs blended across a change point via a logistic function,395

S(x; r, x0, ξ1, ω1, ξ2, ω2) = L(x;−r, x0)Φ(x; ξ1, ω1)+L(x; r, x0)Φ(x; ξ2, ω2), (4)

where L(x) is a logistic function,396

L(x) =
1

1+ e−r(x−x0)
, (5)

with r determining the slope of the transition—note the sign change of r from first to second term in (4)—and x0 determining397

the location of the change point. This blended version of S allows for the shape of the function to be determined by ω1 and ξ1398

for x < x0 and ω2 and ξ2 for x > x0 with a narrow smooth transition band of lengthscale 1/r to avoid discontinuity. In practice399

we fix the lengthscale to 10% of the ∆99 domain and treat the changepoint, x0 as a free parameter. The vector of parameters400

required for the S in the hierarchical model is then ΘΘΘ = {x0, ξ1, ω1, ξ2, ω2}.401

We estimate distributions of the free parameters in (2), i.e., ΘΘΘ and ν , for each station individually using Bayesian inference402

implemented via a Markov Chain Monte Carlo (MCMC) method. Bayesian inference via MCMC was implemented by403

building and evaluating the hierarchical model in PyMC341, an open source probabilistic programming framework for Python.404

Uninformative uniform prior distributions were assumed for all model parameters. Posterior distributions for the parameters405

were conditioned on vectors of observed monthly counts (YYY ) and ∆99 values (xxx) such as those represented by the scatter plots in406

Extended Data Fig. 5. Given the posterior distributions for the free parameters, we can then input a monthly value for ∆99 as xxx407

into (2) and output a probability distribution for the monthly count of HTF days above a threshold. The posterior models for408

Honolulu and Boston demonstrate the ability of the method to capture the probabilistic relationships underlying the scatter409

plots (Extended Data Fig. 5). Thus, given a projection (or ensemble of projections) of ∆99 during the twenty-first century, we410

can produce probabilistic projections for monthly counts of HTF days above a threshold.411

Twenty-first century projections of ∆∆∆99412

Projecting future ∆99 values for each station and threshold during the twenty-first century requires projections of ζ99 and η in413

(1). The latter is composed of two components: (1) secular local mean sea level (LMSL) rise related to forced climate variability414

and vertical land motion, and (2) stochastic monthly LMSL variability related to atmosphere–ocean dynamics and internal415

climate variability. This gives three components of ∆99 (ζ99 plus two components of η), which we project independently as416

discussed below.417
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Secular LMSL rise projections418

We use the U.S. National Oceanic and Atmospheric Administration (NOAA) local sea level rise scenarios24 obtained from the419

NOAA Center for Operational Oceanographic Products and Services (CO-OPS, https://tidesandcurrents.noaa.gov/publications/techrpt083.csv).420

These are discrete projections with predetermined amounts of LMSL rise by 2100, which are designed to provide planning421

scenarios corresponding to various risk tolerances. The scenarios for each site include local factors such as glacial isostatic422

adjustment and regional patterns of sea level change due to the gravitational and rotational effects of melting glaciers and ice423

sheets. We focus on the Intermediate Low and Intermediate scenarios, which correspond to twenty-first century global mean424

sea level rise of 0.5 m and 1.0 m, respectively. The NOAA scenarios are provided with decadal resolution, which we interpolate425

to monthly resolution via cubic spline.426

Projecting monthly LMSL variability427

Gaussian processes have been used previously to model parameters relating mean sea level variability and HTF42. We modeled428

non-secular monthly LMSL variability, m(t), as the weighted sum of a zero-mean Gaussian process with unit variance, G, and429

normally distributed white noise with zero mean and unit variance, Σ,430

m(t) = aG+bΣ . (6)

Serial correlation in G is determined by an exponentiated quadratic covariance function, K,431

K(t, t ′) = exp
[
(t− t ′)2

2l2

]
, (7)

where l is a timescale. Distributions of the free parameters, {a,b, l}, were determined from observed monthly mean tide-gauge432

observations for each station via Bayesian inference and MCMC using PyMC341. Given the variance in the observed non-433

secular monthly mean sea level time series, σ2
m, the parameters a and b were chosen from a multivariate beta (or Dirichlet)434

prior to ensure that a2 + b2 = σ2
m and for any given draw from the posterior. The parameter l was given an uninformative435

Gamma-distributed prior. We generated an ensemble of 104 posterior samples of m(t) spanning the twenty-first century for436

each U.S. tide gauge station.437

99th percentile of astronomical tides438

Tides are often treated as if they are unchanging in HTF assessments, and tide predictions are often performed and interpreted439

as if they are free from uncertainty. These are not good assumptions in many locations17 due to correlations of tidal amplitude440

with mean sea level variability43 and changes in the geometry of harbors and estuaries44. Here, we generate an ensemble of441

tide predictions for each location that accounts for portions of the nonstationarity in future tidal amplitudes. In particular,442

we (a) include the observed relationship between mean sea level variability and constituent amplitudes and phases, and (b)443

an extrapolation of secular trends in tidal amplitude and phase that are unrelated to mean sea level rise. Our method does444

not represent a complete accounting of the uncertainty and sources of nonstationarity—and some assumptions have been445

made—but the result is preferable to not considering nonstationarity and uncertainty in the tides.446

Ensemble projections of ζ99 were determined for each location individually in a multistep process:447

1. Generate an initial estimate of tidal constituents from harmonic analysis of hourly tide-gauge data. For this initial step,448

tidal constituents were estimated from the complete record using an implementation of UTide45 for Python. Note that449

development of UTide for Python is ongoing, but comparisons of UTide predictions to NOAA tide predictions suggest450

results from the former are robust.451

2. Distinguish between minor and major constituents with signal-to-noise ratios less than than two and greater than two,452

respectively.453

3. Subtract predictions of minor constituents over the observed period and perform harmonic fits on the remaining hourly454

variability using UTide45 for the major constituents in each year of the record individually. Year-to-year variations455

in major-constituent amplitudes and phases reflect both astronomical (e.g., nodal cycle) and non-astronomical (e.g.,456

correlation with mean sea level43) processes.457

4. Model variability in the phases and amplitudes of each constituent as a sum of Gaussian processes with periodic and458

linear kernels, plus a term proportional to detrended annual mean sea level variability and an additional white-noise459

term. The periodic kernels represent major tidal modulation periodicities (18.61, 9.305, 8.85, and 4.425 years)16. Linear460

trends in the constituent amplitudes and phases were modeled as two linear processes linked at a variable change point,461

which allows for an inflection in the secular trend of each constituent and ensures that extrapolating linear trends in the462
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amplitude and phase of each constituent are representative of the most recent trend. The change point was required to be463

consistent for both amplitude and phase. Model parameters and the relative weight of each component were determined464

via Bayesian inference and MCMC using PyMC341.465

5. Generate an ensemble projection of each constituent individually from the components of amplitude and phase variability466

in the previous step. When projecting tidal variability for the twenty-first century, we confine the relationship with mean467

sea level to be a relationship with steric (or density-related) changes in mean sea level. In general, the relationship468

between mean sea level and constituent amplitude can be related to water depth or stratification, but it is difficult469

to disentangle these effects in the absence of dedicated, local modeling studies46. Thus, the decision to confine the470

relationship to steric changes in mean sea level is a conservative choice to limit overestimating this effect. Only the471

steric component of the NOAA SLR scenario used in each case is added to the ensemble of monthly LMSL variability472

(described earlier in the methods) to produce estimates of steric sea level variability in the twenty-first century.473

6. Construct an ensemble of 104 hourly twenty-first century tidal height predictions from the ensemble of annual projections474

for each major constituent and add a deterministic prediction of the minor constituents. The Gaussian process represen-475

tations underlying each major constituent allow us to construct tidal predictions with hourly resolution that modulate476

smoothly from one annual window to the next. Note that in every case, our methodology for tide prediction produces a477

reduction in non-tidal residual variability over the observed period compared to the standard NOAA harmonic analysis.478

7. From the ensemble of hourly tidal height predictions, generate an ensemble of 104 projections of ζ99.479

Ensemble projections of HTF days480

To produce ensemble twenty-first century projections of HTF days above a given threshold, we performed the following481

procedure for each combination of station, SLR scenario, and threshold:482

1. Generate 104 projections of ∆99 by adding the ensemble of η projections (SLR scenario plus monthly variability) to the483

ensemble of ζ99 and subtracting the threshold height, H.484

2. For each value in the ensemble of ∆99 projections, make a draw from the posterior of the model in (2).485

3. Generate a random positive integer representing a monthly count of HTF days from the beta-binomial distribution486

described by each combination of ∆99 value and posterior draw.487

The result is an ensemble of 104 twenty-first century projections of HTF days per month for each combination of station, SLR488

scenario, and threshold. We can then leverage these ensembles of monthly counts to generate likely ranges and assess the489

relationship of extreme months and seasons to counts over longer periods of years to decades. Note that the spread in each490

ensemble ensemble grows with SLR due to the nature of counting exceedances above a threshold (e.g., the 10th–90th percentile491

ranges in Fig. 1). For example, when a threshold is rarely exceeded, most years will experience zero HTF days, and the range492

of possible annual counts is narrow (e.g., 0–5 HTF days per year). With SLR, exceedances become more common and the493

range of possible annual counts grows.494

Determination of years of inflection (YOIs)495

YOIs were identified using the 50th-percentile curve from the ensemble of annual HTF projections (see below) for each496

combination of location, scenario, and threshold. Two characteristics of the 50th-percentile curve were used. The first is497

the difference between the change in HTF frequency over two adjacent ten-year periods, which is analogous to the second498

derivative of the 50th-percentile curve and is largest when the slope of the projection changes rapidly. There can be multiple499

acute inflections over a single projection, however, which motivated the use of a second quantity: the 10-year multiplier (or500

x-fold increase) over the second of the two adjacent 10-year periods. The 10-year multiplier is largest for inflections that501

represent a transition from few to many expected days of HTF per year. For example, a change from 10 to 50 HTF days per year502

over the second 10-year period has a multiplier of 5; a change from 50 to 100 has a multiplier of 2. In practice, we computed503

both quantities in sliding 21-year windows centered on each year in the HTF projection curves. We identified the YOI for each504

combination of location, scenario, and threshold as the year with the highest average rank over both quantities.505

Data availability506

Tide gauge sea level data used in this analysis are publicly accessible and were obtained from the NOAA CO-OPS Data507

Retrieval API (https://api.tidesandcurrents.noaa.gov/api/prod/). The NOAA sea level rise scenarios are publicly available and508

were obtained from the NOAA CO-COPS website (https://tidesandcurrents.noaa.gov/publications/techrpt083.csv).509
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Code availability510

All code generated for data analysis and figure creation is archived in a public repository47 under the GNU Affero General511

Public License v3.0. The repository includes the python environment, which provides the version of all third-party libraries and512

packages used in this work.513
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